Effective embryoid body formation from induced pluripotent stem cells for regeneration of respiratory epithelium.
نویسندگان
چکیده
OBJECTIVES/HYPOTHESIS We have previously demonstrated the potential use of induced pluripotent stem (iPS) cells for regeneration of respiratory epithelium by culturing embryoid bodies (EBs). The aim of the present study was to determine the most effective conditions for EB formation from iPS cells for regeneration of respiratory epithelium. STUDY DESIGN Experimental study. METHODS iPS cells cultured on a gelatin-coated dish were seeded on low-attachment plates for generating EBs. Under several conditions including the air-liquid interface (ALI) method, with varying cell numbers and suspension times, EBs were transferred to a gelatin-coated dish supplemented with growth factors. The shape, size, aggregation, and adhesion of EBs for iPS cell differentiation were evaluated, and the cultured tissue was histologically examined. RESULTS EBs appropriate for differentiation were observed using 1,000 cells after 5 days of suspension culture. Respiratory epithelium-like tissue was histologically observed. The ciliary epithelium was confirmed immunohistologically. CONCLUSIONS Based on the varying suspension times and cell numbers with the ALI method, this study presented effective conditions for EB formation from iPS cells for regeneration of respiratory epithelium.
منابع مشابه
Deriving retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells by different sizes of embryoid bodies.
Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towa...
متن کاملFrom confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium.
Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In ...
متن کاملMicrofabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells
Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture sys...
متن کاملDifferentiation of Human Protein-Induced Pluripotent Stem Cells toward a Retinal Pigment Epithelial Cell Fate
Compared with many induced pluripotent stem cell (iPSC) lines generated using retrovirus and other non-integrating methods, the utilization of human protein-induced iPSC (piPSC) lines may provide a safer alternative for the generation of retinal pigment epithelial (RPE) cells for transplantation in retinal degenerative diseases. Here we assess the ability of piPSCs to differentiate into RPE cel...
متن کاملBone Tissue Engineering: a Mini-Review
Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Laryngoscope
دوره 124 1 شماره
صفحات -
تاریخ انتشار 2014